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It is often desired to solely measure the time-varying rigid-body (quasi-static) response of a structural system under 
transient loading conditions.  Due to the transfer functions of the measuring transducers, the measuring systems, and 
the mechanical structure to which they are affixed, the measured responses can be complex.  The goal of this study 
was to optimize a measurement system to enable the extraction of meaningful rigid-body data.  A novel scaling 
method, based on the 95 percent amplitude attenuation point of the filters, was developed to allow meaningful com-
parison between different analog filters.  The optimal filter was found to be a sixth-order Bessel filter with its 95% 
amplitude attenuation point placed at 70 percent of the resonant frequency of the structure.  The sweet spot for locat-
ing the accelerometer and its isolator within the body was also identified. 

 

Nomenclature 
a  = acceleration 
B = Butterworth filter 
Be = Bessel filter 
c  = damping coefficient 
C1 = Chebychev, 0.1 dB, filter 
C5 = Chebychev, 0.5 dB, filter 
[ ]D  = dynamics matrix 

F  = force 
k  = stiffness of accelerometer sensing element; 

also Nk ,,1K= , element in finite element 
model 

[ ]K  = stiffness matrix 

m  = mass of accelerometer sensing element 
[ ]M  = mass matrix 

( )ωr  nωω= , normalized frequency 

nω  mk= , natural frequency 

dω  21 ζω −= n , damped natural frequency 

ζ  ( )kmc 2= , damping ratio 

Introduction 

he ability to extract rigid-body data from shock-
induced loads is important in applications such as 
the measurement of forces in short-duration hy-
pervelocity test facilities,1 pulse detonation en-

gines,2 and penetrators for planetary and lunar sample 
return missions3– 5 and for obvious military applications.6  
Often, the desire is to solely measure the time-varying 
rigid-body (quasi-static) response of a structural system 
under shock loading conditions.  Due to the transfer 
functions of the measuring transducers, the measuring 
systems, and the mechanical structures to which they are 
affixed, the measured responses can be complex.  The 
goal of this study is to optimize a measurement system to 
enable the extraction of meaningful rigid-body data.  The 
emphasis of this study is on penetrators although the 
technique can be employed elsewhere. 

The most common measurement in penetrometry is 
the penetrator’s dynamic response.  This measurement 
enables inferences to be made concerning the geomate-
rial’s characteristics.  The measurements can also be 
used to validate structural models predicting penetrator-
geomaterial interaction.  The ability to make real-time 
decisions on board enables the control of select functions 
during penetration.  For example, the ability to detect a 
change in the composition of the geomaterial could be 
used to trigger the storage of measured data for retrieval 
or trigger the transmission of data to a remote receiver. 

Real-time decisions require the comparison of 
measured information against a prescribed or predeter-
mined standard.  Therefore, the ability to generate accu-
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rate and reliable predictions and the ability to obtain 
high-quality data of sufficient bandwidth for comparison 
with these predictions is of utmost importance.  This 
paper focuses primarily on the latter, that is, the meas-
urement system design to enable real-time decision-
making in penetration events.  This includes details on 
transducer selection, transducer placement, anti-aliasing 
filter type, anti-aliasing filter frequency selection, signal 
conditioning amplifier location and the survivability of 
the signal processing components. 

Predictions of the loads imposed on the penetrator 
during specific events must first be obtained before the 
quality of the measurement system can be assessed.  The 
output from the modeled penetrator and measurement 
system can then be compared against the predicted inputs 
to optimize the system design and to assess errors. 

In order to assess the quality of the measurement 
system, we need to first generate predictions for loads 
imposed on the penetrator during specific penetration 
events. These predictions are then input to the combined 
penetrator structural model and the measurement system. 
The output is then compared to the predicted inputs to 
optimize the system design and provide error assessment. 

Modeling of penetrator-geomaterial interaction 

Modeling of penetration-geomaterial interaction involves 
theory, empiricism and finite element methods in a cus-
tom software program in combination with commercially 
available software.  The rigorous analysis of penetrators 
and their interaction with targets is often performed us-
ing powerful supercomputers. 

The first step in modeling penetration events usually 
involves the use of hydrocodes.7  Hydrocodes have been 

developed over the past few decades to simulate dynamic 
events, especially those that include high shock 
strengths.  Hydrocodes are used to calculate the strains, 
stresses, forces and accelerations of both the penetrator 
and the target geomaterial as a function of time and 
space.  These programs include simple details about the 
penetrator geometry and impact conditions. 

The main limitation of hydrocodes is their computa-
tional complexity.  Hydrocodes are primarily used to 
predict the early time (O(10 ms)) behavior of simple ge-
ometries and targets.  This is useful in providing simple 
guidelines for payload and penetrator survivability dur-
ing the initial high-shock impacts. 

There also exist theoretical and empirical models 
that predict the rigid body forces (and therefore rigid 
body accelerations) that act on the penetrator during 
penetration events.8–12  PENCRV3D is one such software 
program that allows the prediction of penetration events 
through concrete, soil and air.13 

A shortcoming of present models is that they attempt 
to model the low frequency response of the penetrator 
(by treating them as rigid bodies) but ignores the higher 
frequency structural characteristics of the penetrator and 
their effect on the measured data.  The problem, simply 
stated, is that while the predictions provided by present 
modeling capability are generally those of rigid body 
response, the data available for real time decision making 
contains within it higher frequency structural content as 
well as errors induced by the measurement system.  This 
fact complicates the comparisons between the measured 
and predicted responses, thereby compromising the abil-
ity to make decisions in real time.  The best course of 
action is to acquire data of sufficient quality and band-
width so that real-time comparisons (between predicted 
and measured parameters) can be made more effectively. 

In order to provide design guidance for these meas-
urement systems, specific test cases where penetration 
events have been modeled are needed.  An example of 
the predicted axial force time input for a miniature pene-
trator used for testing purposes (Fig. 1) as it traverses 
through a single layer of concrete is shown in Fig. 2.  
This penetrator is approximately 23.4 in. in length and 3 
in. in diameter, and weighs approximately 28.8 lbf. 

The prediction shows the entry of the both the nose 
and tail of the penetrator into the layer.  The calculation 
was stopped before the modeled penetrator came to a 
complete stop.  This resulted in a non-zero force value at 
the end of the data set.  PENCRV3D assumes that the 
penetrator is a rigid body and has infinite stiffness and 
finite mass. The predicted forces are all along the axial 
axis of the penetrators and are essentially the rigid body 
forces acting on these penetrators.  These forces can now 
be used as inputs into a finite element model and the 

 
Figure 1.  Sketch of penetrator (dimensions in in.). 
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Figure 2.  Force–time history of miniature penetrator traversing 
a layer of hard concrete. 
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structural response of the penetrator at various locations 
can be calculated. 

Penetrator Structural Response 

Using the rigid body predictions typified by Fig. 2 and 
the mass of the penetrator, the rigid body accelerations 
can be easily calculated as 

penetratorrigidbodyrigidbody mFa =  (1) 

However, the actual acceleration response at any location 
of the penetrator can vary significantly from rigid body 
accelerations due to the elastic nature of the penetrator.  
In order to calculate the structural response of the pene-
trator, a simple finite element model can be created.  
Modal superposition is then used to predict the accelera-
tion response of the penetrator at various internal loca-
tions due to the imposed input loads.  It is assumed that 
during the penetration event, the penetrator body does 
not experience stresses and strains beyond the yield limit 
of the material used.  This allows a simple elastic model 
to be used. 

The penetrator shown in Fig. 1 can be represented as 
five axial cylindrical sections of varying cross sections 
with an added point mass to represent the tip of the nose. 
The sketch of the equivalent cylindrical model of the 
penetrator is shown in Fig. 3.  The equivalent cylindrical 
model can now be used to create a corresponding finite 
element model.  The series of cylinders for the penetrator 
can be discretized into elements of equal length, and 
mass and stiffness matrices generated.  The elements 
themselves are modeled as two degree-of-freedom rod 
elements.  The mass and stiffness matrices for a single 
element can be written as 
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where A  is the cross sectional area of the cylinder at 
that location, L  is the length of element, E  is the 
modulus of elasticity and ρ  is the mass density.  The 
principles of linearity and superposition can now be ap-
plied to generate the mass and stiffness matrices for these 

penetrators.  Assuming 310322.9 −×=ρ  slugs/in.3, 
61030 ×=E  lbf/in2, and 125.0=L  in., we obtain 

the global mass matrix [ ]M  and the global stiffness 

matrix [ ]K .  In building the mass and stiffness matrices, 
it is assumed that the boundary conditions on the pene-
trator are free-free, that is, none of the nodes of the ele-
ments used in the finite element model are restrained. 
This assumption has been used based on the agreement 
of empirical data gathered from instrumented penetration 
tests with modal tests performed under free-free condi-
tions.  From the global mass and stiffness matrices, we 
can obtain a dynamics matrix 

[ ] [ ] [ ]KMD 1−=  (4) 

The eigenvalues and eigenvectors for the penetrator can 
be solved.  The zeroth (rigid body), first, second and 
third eigenvalues are 0, 5.69, 13.55 and 20.6 kHz, re-
spectively.  The normalized mode shapes are shown in 
Fig. 4. 

Note that for a model (as exemplified in Fig. 3) with 
N  elements, the number of nodes is 1+N , which is 
also equal to the total number of degrees of freedom.  
The nose is modeled as a point mass at node N .  From 
the matrix of eigenvectors [ ]Φ  and the vector of input 

force loads { }P , the modal mass, modal stiffness and 
the modal loads can be obtained via 

[ ] [ ] [ ][ ]ΦΦ= MM T  (5) 

[ ] [ ] [ ][ ]ΦΦ= KK T  (6) 

{ } [ ] { }PP TΦ=
v

 (7) 

In using modal superposition to calculate the structural 
response of the penetrator, it is assumed that the rigid 
body forces act on the nose of the penetrator, that is, the 
rigid body force-time input defined in Fig. 2 acts on node 
N . Therefore the vector { }P  can be defined as 

18 

 
Figure 3.  Sketch of cylindrical model (dimensions in in.).
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Figure 4.  Normalized mode shapes. 
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where ( )tF  is the force input load to the penetrator.  
The structural response of the penetrator to a generalized 
input ( )tF  can now be computed. 

The acceleration response ( )tAk  of the penetrator at 

node k  due to a generalized input loading ( )tF  can be 
found using 
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where penetratorm  is the total mass of the penetrator, ∗ is 
the convolution operator and  
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is the step response of a second-order system with the 
same natural frequency as the mode under question.  The 
value of ζ  attributed to the penetrator metal case and 
any contained material has been assumed to be 0.03 and 
is representative of the damping found in metals.  The 
structural response at any internal location can be found 
from an arbitrary input loading applied to the nose using 
Eqs. (1)–(12). 

Measurement System Overview 

The measurement system must be capable of acquiring 
data of sufficient quality and bandwidth to enable real-
time decision making.  Figure 5 shows a block diagram 
of the major analog components of the measurement 
system, including the transducer, signal conditioning 
amplifier and the anti-aliasing filter.  The digital elec-
tronics that follow the analog measurement system, in-
cluding the analog-to-digital converter, micro-controllers 
and digital signal processors will not be discussed in this 
paper.  Their design is influenced by the specific control 
algorithms that are applied.  However, optimizing the 
design of the analog components is a necessity for any 
measurement system independent of subsequent digital 
electronics. 

In Fig. 5, the predicted input loads by PENCRV3D, 
say, are used as inputs to the finite element model of the 
penetrator.  The structural response calculated from the 
finite element model is then used as input into a meas-
urement system model.  The output from these responses 
can in turn be compared to the original predictions to 
enable optimization of measurement system design. 

Since the existing predictive capability is limited to 
rigid-body response, the measurement system must be 
capable of extracting the low frequency response of the 
penetrator while eliminating its higher frequency struc-
tural response.  This can be done by low-pass filtering of 
the analog signal.  The low-pass filtering also eliminates 
distortions caused by aliasing.  However, low-pass filter-
ing of the analog signal introduces errors in the form of 
phase shifts, time delays, spreading of the rise time of the 
signal, and causes amplitude distortion.  The type of fil-
ter used and the filter cutoff frequency must be carefully 
selected to minimize these distortions and errors.  

Usually, the transducer’s signal is first amplified to 
acceptable levels and then low-pass filtered to eliminate 
aliasing and extract the needed bandwidth. However, 
since the structural response can be significantly greater 
in magnitude than the rigid body response, over-ranging 
of the amplifier may be possible, resulting in a clipped 
signal.  Low-pass filtering of this clipped signal masks 
the effect of the clipping.  To prevent clipping, the signal 
can be low-pass filtered prior to amplification. 

Transducer Selection and Isolator Design 

Transducers considered for use in measurement systems 
to enable real-time decision-making in penetration events 
are strain gages and accelerometers.  Both are capable of 
responding to the structural vibration of the penetrator.  
Several factors favor accelerometers over strain gages for 
the present application.  The signal levels from strain 
gage circuits are typically in the mV range and are lim-
ited by the minimum wall thickness required in the pene-

 
Figure 5.  Measurement system block diagram. 
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trator case, that is, the thickness of the penetrator case 
has to be above a minimum value to ensure structural 
integrity and thus places an upper bound on the magni-
tude of strain in the case.  This leads directly to low lev-
els of strain, resulting in low signal levels and therefore 
poor signal-to-noise ratios.  Accelerometers, on the other 
hand, can be tailored to specific ranges and can provide 
better signal magnitudes (up to hundreds of mV) and 
therefore better signal to noise ratios.  

Another reason for selecting accelerometers over 
strain gages has to do with measurement of bending 
modes.  Strain gages mounted on the case of the penetra-
tor respond to both bending and axial strains.  In order to 
cancel the contamination of the bending strain on the 
axial strain measurement, a second strain gage has to be 
mounted 180 deg around the circumference of the pene-
trator case.  This requires additional wiring and intercon-
nects, increasing the complexity of manufacturing the 
penetrator and measurement system.  Accelerometers 
respond only to accelerations along their axis of meas-
urement and can be mounted relatively easily along the 
axis of the penetrator.  This results in the direct meas-
urement of axial accelerations without the need for fur-
ther hardware or wiring.  In addition, the ability to meas-
ure pure axial accelerations makes the comparison of the 
measured data to predictions easier and more reliable. 

Accelerometer 

The accelerator that was chosen is an Endevco (Capis-
trano, California) model 7270A.  This accelerometer is 
capable of measuring up to and beyond 200,000g, and 
has very high resonant frequencies (1.2 MHz for the 
200,000g model).  This transducer can be modeled as a 
second-order system with a base acceleration input, a 
known resonant frequency and a very low damping.  The 
damping is assumed to be 003.0=ζ .  This low damp-
ing coefficient means that the amplification at resonance 
is very high.  Thus, it is essential that inputs with fre-
quencies at or near the accelerometer’s resonance must 
be prevented from entering the accelerometer as they 
could damage or destroy the transducer. 

Isolator 

The interaction of the penetrator and the geomaterial 
during impact into hard layers such as concrete can be 
separated into two major periods.  The first period is tens 
or a few hundred ms long and can be referred to as the 
material response phase.  In the period beyond the mate-
rial response, the structural response of the penetrator 
dominates, see “Penetrator Structural Response” above. 

Immediately after impact, shock waves propagate at 
through the penetrator and are reflected by internal 
boundaries and free surfaces, imparting a complex chain 
of step velocities and acceleration impulses to the accel-

erometer.  The magnitude, duration and occurrence of 
these events are indeterminate but it is safe to assume 
that they occur every time the penetrator transitions from 
a soft geomaterial (air, dirt) to a hard geomaterial (e.g. 
rocks, concrete).  These impulses excite the accelerome-
ter’s resonance and cause the accelerometer flexure to 
oscillate at very high amplitudes.  Due to this large am-
plification, the output from the accelerometer can easily 
over-range the signal conditioning equipment and the 
flexure of the accelerometer could be damaged.  Thus, it 
is of utmost importance that the accelerometer be de-
signed to survive during this early time period.  This is 
best accomplished by using a shock isolator. 

The primary goal of the shock isolator is to progres-
sively mitigate high frequency inputs to the accelerome-
ter so as to prevent over-ranging and breakage during the 
material response time period.  Ideally, the shock isolator 
is designed to transmit rigid-body frequencies with flat 
amplitude and linear phase response, and mitigate all 
higher frequencies.  However, materials that can be used 
to build shock isolators have high internal losses and are 
very rate and temperature dependent.  Due to these limi-
tations, the best course of action is to design a shock iso-
lator that provides flat frequency response to as high a 
rigid-body frequency as possible while still providing 
adequate attenuation to isolate the accelerometer from 
the impulsive loading.  By designing the shock isolator 
to begin rolling off well above the rigid-body frequen-
cies, the effects of rate and temperature on the rigid-body 
frequencies can be reduced. 

A block diagram of a conceptual shock isolator is 
shown in Fig. 6.  The accelerometer is compressed be-
tween two layers of thin isolator gaskets.  A spring–mass 
model of a conceptual shock isolator is shown in Fig. 6.  
In this figure, the springs represent the stiffness of the 
isolation material. For our purposes, the damping of the 
isolator gasket material has been ignored. From this 
model, the resonant frequency of the accelerometer-
shock isolator assembly can be calculated as 

( )mtAEISO 2=ω  (13) 

where A  is the area of the accelerometer in contact with 
the isolator gasket, E  is the equivalent modulus elastic-
ity of the gasket material, m  is the mass of the acceler-
ometer and t  is the thickness of the gasket and.  It can be 
noteed that the mass of the accelerometer cabling has 
been ignored.  This implies that the cables should be 
properly strain relieved in order to prevent unwanted 
loading on the isolator assembly.  From the manufac-
turer’s data, =m 1.5 gm and =A 0.157 in2. 

For the penetrator example, the second axial reso-
nance occurs at approximately 13 kHz.  As we are inter-
ested in recovering rigid-body data, this frequency is 
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used as the upper bounding case, that is, the isolator as-
sembly must have flat amplitude and linear phase re-
sponse to at least 13 kHz.  To ensure this, the resonance 
of the isolator must be at least 65=ISOω  kHz.  With 
such an isolator, we can assume that the accelerometer 
will survive the initial material response phase of the 
penetration process and that the isolator will have no 
significant effect on the measured data.  Thus the effects 
of the isolator can be ignored and the isolator can be 
treated as a component with a unity transfer function. 
Now that a sensor and an isolation strategy have been 
selected, the next step is to determine the optimal place-
ment of the sensor and isolator assembly. 

Transducer Placement 

Since the penetrator is a structural system with various 
resonances and associated mode shapes, the placement of 
the sensor at different locations will result in different 
time histories.  Let the penetrator’s transfer function at 
node k from an input ( )tF  at node N  be defined as 

))((
))((

tFfft
tUfft

H k
k =  (14) 

where the operator fft is the fast Fourier transform of the 
time history in question.  To calculate the transfer func-
tion of the penetrator at various locations along its 
length, a decaying exponential input of unit peak can be 
used.  This exponential input, as shown in Fig. 7, decays 
to 10 percent of its initial value in 5 ms.  Using Eq. (14), 
the transfer functions at these locations can be calculated, 
some of which are shown in Fig. 8. 

Figure 8 shows that the transfer function of the 
penetrator varies along its length.  It can therefore be 

surmised that there is a location along the penetrator 
length where the response of a transducer would be op-
timal, in terms of the recovery of rigid-body response.  In 
other words, we are interested in preserving the flat am-
plitude response to as high a frequency as possible. In an 
infinitely rigid structure, this flat amplitude response 
would extend to infinity. 

Figure 4 shows that the mode shape for the lowest 
non-zero mode vanishes at a certain location along the 
penetrator.  A transducer placed at this location will re-
spond to primarily the second and third axial modes and 
will have a transfer function whose amplitude response is 
flat to higher frequencies.  This is the optimal location 
for transdcer placement as it maximizes the flat ampli-
tude response and thus allows the best possible reproduc-
tion of the rigid body data.  For the present example, the 
“sweet spot” is 8.75 in. from the tail.  In the finite ele-
ment model, with 99 nodes, this location is node 70.  The 
transfer function at this node is shown in Fig. 9. 

Analog Filter Selection 

The extraction of rigid-body data from the structural dy-
namics requires the use of a low-pass filter.  Such a filter 
inevitably introduces time delay and signal distortion.  
Therefore, its selection cannot be arbitrary and care must 
be given to the choice of filter type, filter pole order and 
the placement of the filter’s cut-off frequency.  

There are three major filter types in regular use in 
analog signal processing, namely, Butterworth, Bessel 
and Chebyshev filters.  The Butterworth filter is designed 
to have the maximal flat amplitude response, the Bessel 
filter is designed to maximize phase linearity and the 
Chebyshev filter excels in its transition from pass-band 
to stop-band.  Of these three, the Chebyshev filter allows 
ripple in the pass-band.  Two common pass-band ripple 
values are 0.5 and 0.1 dB.  In this study, four filter 
types—Butterworth, Bessel, Chebyshev 0.5d B and Che-
byshev 0.1 dB—of second, fourth, sixth and eighth order 
are examined. 

Figure 10 shows the responses of second-order fil-
ters.  The amplitude for all of these filters roll off at 12 
dB/octave.  Note that each filter has its unique frequency 
response.  To facilitate inter-comparison between the 
curves, the filters have been normalized to have the same 
95% attenuation point at ( ) 1=ωr .  The characteristics 
of the other filter types are not shown for brevity. 

Moreover, each of the filters has a unique step re-
sponse.  In order to compare these varying step re-
sponses, all the filters have been arbitrarily scaled to 
provide 95% attenuation at 10 rad/s.  The value of 10 
rad/s has no physical significance except to allow the 
inter-comparison of the step responses.  Figure 11 shows 
the step responses of second-order filters.  The step 

 
a. Block diagram. 

 
b. Spring–mass model. 

Figure 6. Conceptual isolator design.
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responses of other filters are not shown for brevity, al-
though it should be stated that other than the Bessel fil-
ter, the others show damped oscillatory behavior. 

It is apparent from Figs. 10 and 11 that a filter’s 
spectral characteristics and rise time are important.  The 
rise time of the filter conditioning the output from the 
accelerometer controls the time it takes to identify transi-
tions in the geomaterial during the penetrator’s traverse.  
Thus, the rise time of the filter must be minimized so as 
to enable the fastest detection of layer transitions in the 
geomaterial.  The second concerns the settling time of 
the filter.  The settling time controls the time required 
before a void in the geomaterial can be accurately de-
tected.  Minimizing the settling time allows for fast de-
tection of voids.  The third concerns the time delay of the 

filter.  The filter creates a time delay in the process of 
making real-time decisions based on the filtered data.  As 
with rise time and settling-time, the time delay of the 
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Figure 7.  Unit exponential input. 
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Figure 8.  Transfer functions at nodes 25, 50 and 75. 
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Figure 9.  Transfer functions at sweet spot (node 70). 

 

 
a.  Amplitude spectra. 
 

 
b.  Frequency spectra. 
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Figure 10.  Response of second-order filters. 
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Figure 11.  Step response of second-order filters. 
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filter must be minimized.  However, these three criteria 
are not mutually exclusive and therefore the goal is to 
pick a filter type and order that will provide the best pos-
sible compromise between these three requirements. 

Table 1 shows the rise and settling times of various 
filters.  Rise time, as defined here, is the 10 to 90 percent 
value of the step response.  The filters were assigned 
values from 1 to 16 corresponding to fastest to slowest 
rise times.  Table 1 also shows the two percent settling of 
these filters with a similar grading scheme.  Finally, an 
overall figure of merit is assigned based on the average 
of the scores for the rise and settling times, as also dis-
played in Table 1.  The results indicate that the 8th-order 
Butterworth and the 6th-order Bessel filters are the best. 
These two filters will be investigated further to select the 
better of the two. 

Filter Cutoff Frequency and Amplifier Placement 

After identifying the optimal filters, we now need to de-
termine the optimal cutoff frequencies.  A parametric 
study on the optimal filter cutoff frequency requires first 
that a representative structural system with arbitrary 
resonant frequency be modeled.  Any structural system 
can be modeled through its first resonance as a second-

order system with appropriate damping.  In this study, 
the representative system was modeled with a resonant 
frequency of 10 rad/sec and a damping coefficient of 
0.03.  This result is shown in the curve labeled ‘2nd’ in 
Fig. 12.  The amplitude-frequency curves of the two can-
didate filters selected above can be combined with that of 
the structural system to create a set of composite transfer 
function curves.  The composite transfer functions thus 
created are also shown in Fig. 12.  The figure shows that 
the composite amplitude-frequency curves differ signifi-
cantly between filter types and filter placement. 

So far, the two filters selected were based on their 
rise and settling time performances.  The results can be 
further enhanced by exploiting the compensating effect 
of the filters and filter cutoff placement.  This is done by 
performing a step response analysis on the composite 
system.  This evaluation encompasses the structural re-
sponse of the penetrator, the response of the accelerome-
ter (assumed to be unity at low frequencies), the response 
of the shock isolator (also assumed to be unity at low 
frequencies) and the responses of the two filter types. 
The results are displayed for the 6th-order Bessel filter in 
Table 2 and for the 8th-order Butterworth filter in Table 
3.  The data show that the peak error increases as the 
filter’s 95 percent attenuation frequency is increased.  

Table 1.  Filter effectiveness. 

 Order Rise Time (s) Score Settling 
Time (s) Score Average 

Score 

Butterworth 2 0.960 15 2.664 10 12.5 

Butterworth 4 0.514 9 2.087 5 7.0 

Butterworth 6 0.441 7 2.330 6 6.5 

Butterworth 8 0.420 5 2.343 7 6.0 

Bessel 2 1.206 16 1.917 4 10.0 

Bessel 4 0.680 12 1.198 2 7.0 

Bessel 6 0.595 11 1.191 1 6.0 

Bessel 8 0.575 10 1.278 3 6.5 

Chebyshev 0.5 dB 2 0.813 13 2.658 9 11.0 

Chebyshev 0.5 dB 4 0.432 6 2.856 12 9.0 

Chebyshev 0.5 dB 6 0.391 2 3.653 14 8.0 

Chebyshev 0.5 dB 8 0.391 1 3.656 15 8.0 

Chebyshev 0.1 dB 2 0.891 14 2.695 11 12.5 

Chebyshev 0.1 dB 4 0.457 8 2.430 8 8.0 

Chebyshev 0.1 dB 6 0.403 4 2.951 13 8.5 

Chebyshev 0.1 dB 8 0.397 3 3.669 16 9.5 
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Moreover, the peak delay decreases as the filter’s 95 
percent attenuation frequency increases.  The settling 
time (either 2 or 5 percent) of the composite system to a 
step input reaches a minimum value as the filter’s 95 
percent attenuation frequency increases, and then begins 
to increase again.  This is because at low frequencies, the 
transient response of the filter dominates the settling time 
while at high frequencies the resonance of the structure 
begins to dominate.  Note that although the results shown 
in Table 2 are for a representative system with a reso-
nance of 10 rad/s, the results generalize to any frequency. 

From the data in Tables 2 and 3, it can be seen that 
the composite response using the 6th-order Bessel filter 
outperforms that using the 8th-order Butterworth filter 
for decreasing peak error, reducing peak delay and re-
ducing settling time.  In addition, the best compromise 
while optimizing all the parameters appears to be the 6th-
order Bessel filter with its 95 percent attenuation point 
set at 70 percent of the lowest resonant frequency of in-
terest in the penetrator.  The second best choice is the 
8th-order Butterworth filter with its 95 percent attenua-
tion point set at 80 percent of the lowest resonant fre-
quency of interest.  

 

System Response to Modeled Inputs 

The previous sections have provided the approach for 
optimizing the analog filter.  This filter is now verified.  
To do so, the modeled input shown in Fig. 2 is used as 
the force input to the finite element model of the penetra-
tor.  The results are shown in Fig. 13. 

Recall that the small peak at approximately 0.0012 s 
in the data (Fig. 2) is caused by the entry of the tail flare 
into the target geomaterial.  The modeled accelerometer 
structural response is calculated assuming the measure-
ment transducer is at the ‘sweet spot’ of the penetrator, 
which is 8.875 in. from the tail.  When placed at this 
location, the accelerometer does not respond to the first 
axial mode at 5693 Hz.  The filtered data results from the 
use of the 6th-order Bessel filter set to have its 95 per-
cent attenuation point at 70 percent of the second axial 
mode at 13549 Hz.  Note the good agreement of the 
magnitude of the pulse peaks between the rigid body 
input and the filtered response.  In addition, the time de-
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a.  Sixth-order Bessel filter. 
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b.  Eighth-order Butterworth filter. 

Figure 12.  Composite amplitude-frequency plot. 

Table 2. Response of 6th-order Bessel filter applied to composite 
system. 

 
Peak 
Error 
(%) 

Peak 
Delay 
(sec) 

2% Set-
tling 
Time 
(sec) 

5% Set-
tling 
Time 
(sec) 

0.5ωn 0.78 2.37 2.01 1.90 
0.6ωn 1.30 2.02 1.66 1.56 
0.7ωn 1.41 1.56 1.38 1.33 
0.8ωn 3.11 1.45 1.53 1.18 
0.9ωn 4.07 1.42 3.39 0.94 
1.0ωn 6.31 1.40 5.23 2.26 
1.1ωn 14.43 0.85 6.60 3.58 
1.2ωn 24.35 0.80 7.67 4.66 
1.3ωn 34.22 0.76 8.73 5.72 
1.4ωn 43.80 0.73 8.99 6.52 

Table 3. Response of 8th-order Butterworth filter applied to 
composite system 

 
Peak 
Error 
(%) 

Peak 
Delay 
(sec) 

2% Set-
tling 
Time 
(sec) 

5% Set-
tling 
Time 
(sec) 

0.5ωn 20.12 2.14 4.77 3.25 
0.6ωn 22.11 1.77 4.01 2.72 
0.7ωn 24.37 1.52 3.37 2.78 
0.8ωn 28.09 1.33 3.44 2.44 
0.9ωn 36.27 1.15 3.90 2.60 
1.0ωn 47.61 1.05 5.75 2.80 
1.1ωn 60.7 0.99 7.12 4.63 
1.2ωn 73.7 0.91 9.25 6.76 
1.3ωn 86.3 0.86 11.35 8.34 
1.4ωn 99.6 0.82 12.42 9.94 
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lay between the filtered data and the modeled input data 
is seen to be approximately 0.0002 s. 

Conclusions 

An optimal analog measurement system to enable real-
time decision making in penetrators has been developed.  
Present modeling capability is restricted to predicting 
rigid body loads acting on penetrators.  Highly transient 
loading such as initial concrete impact and impacts with 
reinforcing materials are not predicted.  As the process of 
making real-time decisions involves comparing predicted 
or known amplitudes or response characteristics to meas-
ured values, the only meaningful comparison that can be 
made is between the predicted rigid-body loading and the 
measured rigid-body acceleration of the penetrator dur-
ing its traverse.  Therefore, it is critical that the best qual-
ity rigid-body data be recovered from the structural re-
sponse of the penetrator while minimizing any distor-
tions introduced by the measurement system. 

The recovery of rigid-body data can be accom-
plished over a region of flat frequency response.  Due to 
the elastic nature of the penetrator, its flat amplitude re-
sponse extends to frequencies below its lowest reso-
nance.  However, the response of an accelerometer varies 
depending on its mounting location on the penetrator.  
An optimal location for the placement of the measure-
ment accelerometer was identified, namely, at the pene-
trator’s first axial mode (sweet-spot). 

A novel scaling method, based on the 95 percent 
amplitude attenuation point of the filters, was developed 
to allow meaningful comparison between common filter 
types and orders.  The step response of these various 
filters was graded using a relative scale.  Two candidate 
filters (6th-order Bessel and 8th-order Butterworth) were 
then combined with a representative model of a second-
order system to investigate the frequency compensation 
effects of filter cutoff frequency placement.  Based on 
the step responses of these composite systems, a 6th-
order Bessel filter whose 95 percent attenuation point is 
set at 70 percent of the second axial resonance of the 
penetrator was determined to be optimal.  The efficacy of 
such an arrangement was demonstrated. 
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Figure 13.  Responses to force input of Fig. 2. 


